Modulation of HERG K+ channels by chronic exposure to activators and inhibitors of PKA and PKC: actions independent of PKA and PKC phosphorylation.
نویسندگان
چکیده
BACKGROUND Human ether-a-go-go-related gene (HERG) channel is the major molecular component of the native rapid delayed rectifier K(+) current (IKr) that is a crucial determinant of cardiac repolarization. Impairment of IKr/HERG function is commonly believed to be a mechanism causing long QT syndromes (LQTS), a lethal ventricular tachyarrhythmia. The cAMP-dependent protein kinase A (PKA) and PKC activities are markedly increased in some pathological conditions of the heart such as heart failure. This study was designed to investigate the effects of acute and chronic exposure to PKA or PKC activators and inhibitors on HERG channel activities and to provide insight into the mechanisms for the modulations. METHODS Channel activity was measured in HEK293 cells stably expressing HERG using whole-cell patch-clamp techniques. Intracellular reactive oxygen species (ROS) were measured by CM-H2DFDA. Mitochondrial membrane potential (ΔΨm) was measured using JC-1 dye. HERG channel phosphorylation was assayed by [(32)P]orthophosphate methods. RESULTS Acute exposure of cells to PKA or PKC activators by bath superfusion minimally affected IHERG, and so did the PKA or PKC inhibitor. By comparison, prolonged exposure (chronic incubation) of cells to PKA or PKC activators significantly impaired HERG K(+) channel function as reflected by reduced IHERG density and positive shift of the steady-state activation curve. Antioxidants vitamin E and MnTBAP both abolished the depressive effects of PKA or PKC activators on HERG function. Further, both PKA and PKC activators stimulated production of intracellular reactive oxygen species (ROS), an effect efficiently prevented by antioxidants or by PKA and PKC inhibitors. CONCLUSIONS HERG function is insensitive to PKA or PKC phosphorylation modulation per se, but can be impaired by the activators of PKA or PKC with long exposure likely via generation of ROS. In view of the critical role of HERG K(+) channel in regulating cardiac repolarization and the sustained activation of both PKA and PKC in many pathological conditions of the heart such as heart failure, it is conceivable that HERG impairment by ROS accumulation induced by PKA and PKC contributes to the impaired cardiac repolarization.
منابع مشابه
O-16: Metabolism of Exogenous Fatty Acids, Fatty Acid-Mediated Cholesterol Efflux, PKA and PKC Pathways in Boar Sperm Acrosome Reaction
Background: For understanding the roles of fatty acids on the induction of acrosome reaction which occurs under association of cholesterol efflux and PKA or PKC pathways in boar spermatozoa, metabolic fate of alone and combined radiolabeled 14C-oleic acid and 3H-linoleic acid incorporated in the sperm was compared, and behavior of cholesterol and effects of PKA and PKC inhibitors upon fatty aci...
متن کاملDownregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC.
We have reported recently a high density of transient A-type K+ channels located in the distal dendrites of CA1 hippocampal pyramidal neurons and shown that these channels shape EPSPs, limit the back-propagation of action potentials, and prevent dendritic action potential initiation (). Because of the importance of these channels in dendritic signal propagation, their modulation by protein kina...
متن کاملERK integrates PKA and PKC signaling in superficial dorsal horn neurons. II. Modulation of neuronal excitability.
Protein kinases belonging to the protein kinase A (PKA), protein kinase C (PKC), and extracellular signal-related kinase (ERK) families have been identified as key players in modulating nociception at the level of the spinal cord dorsal horn, yet little is known about the effects of these kinases on membrane properties of the dorsal horn neurons. PKA, PKC, and ERK exert inhibitory effects on tr...
متن کاملModulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro.
A tetrodotoxin-resistant voltage-gated Na+ current (TTX-R INa) appears to be the current primarily responsible for action potential generation in the cell body and terminals of nociceptive afferents. Although other voltage-gated Na+ currents are modulated by the activation of protein kinase C (PKC), protein kinase A (PKA), or both, the second messenger pathways involved in the modulation of TTX...
متن کاملModulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C.
Voltage-gated Na+ channels (VGSC) are transmembrane proteins that are essential for the initiation and propagation of action potentials in neuronal excitability. Because neurons express a mixture of Na+ channel isoforms and protein kinase C (PKC) isozymes, the nature of which channel is being regulated by which PKC isozyme is not known. We showed that DRG VGSC Nav1.7 (TTX-sensitive) and Nav1.8 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 32 6 شماره
صفحات -
تاریخ انتشار 2013